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Abstract. In this paper, the use of Fourier transforms to derive stellar projected rotational
velocity — v sin i — is described. The main advantages of the representation in the Fourier
domain come from the frequency behavior of the rotational profile, easier to visualize and
to work with than in the wavelength domain. Some examples are taken from the literature.
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1. Introduction

Rotation is one of the fundamental stellar pa-
rameters and the many aspects of its impor-
tance in stellar formation and evolution can
be found in the dedicated IAU Symposium
(Maeder & Eenens 2004).

There are four basic methods for measur-
ing axial stellar rotation, depending on the ob-
served effect of rotation and on the type of ob-
ject. To derive the signatures of axial rotation,
one can analyze:

1. the spectral line profile broadening, which
leads to the projected rotational velocity:
v sin i,

2. the photometric modulation of star light, in
the case of stars with spots on their sur-
face, which allows the derivation of the ro-
tational period,

3. the Rossiter effect which distorts the ra-
dial velocity curve in some eclipsing binary
systems,

4. the shape of the stellar disk, using interfer-
ometric measurement, to derive the oblate-
ness of the star caused by rotation.

The first three methods are overviewed by
Slettebak (1985), and the last and most re-
cent one is detailed by van Belle et al. (2001).
Methods 2, 3 and 4 are limited to specific ob-
jects: stars with spots (2), eclipsing binary sys-
tems (3), nearby and bright stars (4), whereas
the first method can be applied to a very wide
range of objects.

This paper will focus on (1), and the meth-
ods for measuring the v sin i parameter. Sect. 2
will detail the line profile broadening, Sect. 3
will overview the different methods for mea-
suring the v sin i. In Sect. 4, the Fourier trans-
form technique is presented. In Sect. 5, differ-
ent applications of the method to study rotation
are shown.
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2. Line broadening

The observed spectrum of a star, s(λ), can be
written as a double convolution (Gray 1992):

s(λ) = h(λ) ∗ b(λ) ∗ p(λ) (1)

where h(λ) is the “true” spectrum of the star,
b(λ) the broadening function, and p(λ) the in-
strumental profile.

2.1. Rotational profile

Considering pure axial rotation of a homo-
geneous spherical rigid body, the rotational
broadening is a semi-elliptic profile (Carroll
1928; Shajn & Struve 1929).

When adopting a linear law for the limb
darkening 1, an additional parabolic term ap-
pears in the rotational profile:

b(λ′) = c1

√
1 − λ′2︸        ︷︷        ︸

elliptic term

+ c2 (1 − λ′2)︸       ︷︷       ︸
parabolic term

, (2)

with

∆λ = λ0 v sin i/c, (3)
λ′ = (λ − λ0)/∆λ, (4)

c1 =
2 (1 − ε)

π∆λ (1 − ε/3)
, (5)

c2 =
ε

2 ∆λ (1 − ε/3)
. (6)

In Fig. 1 one can see the effect of the limb
darkening parameter ε on shape of the rota-
tional profile. The effect of limb darkening is to
reduce the contribution to the integrated spec-
trum from the regions near the limb.

2.2. Other sources of broadening

The broadening b(λ) can be the convolution
of different broadening mechanisms in Eq. 1.
These mechanisms may have different profiles.
The main mechanisms are briefly described be-
low.

1 Let θ be the angle between the surface normal
and the line of sight to the observer. The local in-
tensity will be a function of θ. Using a linear ap-
proximation, the intensity of light coming from the
surface of the star is: I(θ) = I0 (1 − ε(1 − cos θ)),
where ε is called the limb darkening coefficient.

Fig. 1. Shape of a pure rotation broadening
profile for different values of the limb darken-
ing parameter: ε = 0 (outer curve), 0.2, 0.4 and
0.6 (inner curve).

2.2.1. Pressure broadening

It results from collisions between molecules in
a gas. Because an electron may radiate over
a finite amount of time, the line shape can be
well described by a Lorentzian profile:

bL(λ′) =
αL

π

(
λ′2 + α2

L

)−1
, (7)

where αL is the Lorentzian half-width.

2.2.2. Turbulence

Different motions in the photospheric gas in-
duce a broadening effect on the observed
spectra. Depending on the size of the tur-
bulent cells, these effects are called micro-
or macroturbulence, and they are represented
with Gaussian profiles.

2.2.3. Instrumental effects

The instrument profile p(λ) is another source
of broadening. This point-spread-function is
usually assumed to be Gaussian, but as it is
instrument dependent, can be accurately com-
puted using external calibration data. The re-
solving power, estimator of the width of the
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instrumental profile, is a limitation to the de-
termination of the v sin i. The empirical rule
of thumb says that the lower limit in v sin i in
km s−1 is equal to the dispersion in Å mm−1.

3. Measurement of the v sin i
Many measurements of v sin i can be found in
the literature (Głȩbocki & Stawikowski 2000),
and the major part of them are derived from the
broadening in wavelength space. Even if the
entire line profile can be fitted, it is easier and
quicker to measure v sin i on the basis of one
single parameter: the full width at half maxi-
mum (FWHM). Slettebak et al. (1975 and ear-
lier papers) give calibrations of v sin i against
FWHM.

Another approach can be applied for low
velocity rotators to take benefit of a wide wave-
length range: the width of the cross-correlation
function of the spectrum with a template can be
used to derive the rotational broadening. Melo
et al. (2001) apply this technique to FEROS
spectra of low velocity rotators in M67.

Carroll (1933) first used the Fourier
transforms to measure v sin i in the frequency
domain, and the following sections emphasize
these techniques.

4. Fourier transform approach

Many details and explanations about the anal-
ysis using Fourier transforms can be found in
Smith & Gray (1976) and Gray (1992). The
following sections will give some highlights.

4.1. Line profile in Fourier domain

The convolution theorem tells us that Eq. 1 is
equivalent to

S (ν) = H(ν) B(ν) P(ν), (8)

where S , H, B and P are respectively the
Fourier transforms (hereafter FT) of s, h, b and
p.

1. If the intrinsic profile of the line h(λ) is
close enough to a Dirac impulse function,

then in the frequency domain, H(ν) is a
constant function and thus negligible.

2. The Fourier transform of a semi-elliptic
profile is dominated by a Bessel function
of the first kind2 (Fig. 2). Moreover the ad-
ditive contribution of the parabolic term in
frequency shows similar oscillations3. The
function B(ν) thus oscillates, with an am-
plitude envelope decreasing with increas-
ing frequency.

3. Assuming a Gaussian instrumental profile
p(λ), P(ν) is also a Gaussian function (Fig.
2).

4.2. Measuring rotation

The first use of FT to derive rotational velocity
were done in the 1930s. Carroll (1933) shows
that the v sin i parameter can be derived from
the zero loci of B(ν): ν1, ν2, ν3 ...

These zero loci are inversely proportional
to the v sin i, so that in a logarithmic frequency
scale, a change of the rotational profile velocity
toward higher (respectively lower) v sin i corre-
sponds to a shift of the profile to lower (respec-
tively higher) frequency. It is then easy to shift
a theoretical profile for a given v sin i to match
any observed rotational profile and then both
derive the v sin i and check the shape of the ob-
served profile. Figure 3 shows an example of
theoretical and observed rotational profiles.

2 The Fourier transform of a function f1 defined
by

f1(λ) =

{ √
1 − (λ/Λ)2, if |λ| < Λ,

0, if |λ| > Λ,

is

F1(ν) =

√
2 π J1(Λ ν)

2 ν
,

where J1 is the Bessel function of the first kind of
order 1.

3 The Fourier transform of a function f2 defined
by

f2(λ) =

{ 1 − (λ/Λ)2, if |λ| < Λ,
0, if |λ| > Λ,

is

F2(ν) =
2

Λ2

√
2
π

(
sin(Λ ν) − Λ ν cos(Λ ν)

ν3

)
.
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Fig. 2. a) Example of rotation profile b(λ) (with ε = 0.6) and Gaussian instrumental profile p(λ).
In this case, the rotational broadening is about 6 times larger than the FWHM of the instrumental
profile. b) Fourier transforms of b(λ) and p(λ): B(ν) and P(ν) respectively. The dotted line is the
zero x-axis which intersects B(ν) in ν1, ν2, ν3 ... c) Same as b) with a logarithmic scale in y-axis,
taking the logarithm of the absolute values of B(ν) and P(ν).

Fig. 3. Example of comparison between ob-
served (back) and theoretical (green) rotational
profiles. The three observed profiles corre-
spond to three different spectral lines of a given
spectrum, and the two dashed-line profile are
discarded due to the shape of their first lobe
(compared to the theoretical profile), whereas
the solid-line one is used to derive the v sin i
value.

The loci νk vary with limb darkening and
Dravins et al. (1990) give the polynomial fit of
the position variations of the first three zeros of
the rotational profile with ε.

Similarly to the determination in the wave-
length domain, v sin i in frequency domain can
be derived from one single parameter: the first
zero of B(ν). The relative zero loci provide in-
formations about non-spherical rigid body ro-
tation. Reiners (2003) details the variations of
ν2/ν1 due to solar-like differential rotation, and
gravity darkening.

The amplitude of the sidelobes of B(ν) de-
creases with increasing ν, and it is amplified by
the instrumental profile. Thus the quality of the
data sets limitation on the furthest measurable
zero locus on B(ν).

5. Applications of Fourier techniques

5.1. Single line profiles

The rotational profile b(λ) can be approxi-
mated by observed line profiles h(λ). These
candidate spectral lines shall be:

– not blended, so that the intrinsic profile in
Fourier space does not add zeros in the fre-
quency range used for v sin i derivation,

– close to continuum, for reliable normaliza-
tion,

– intense enough to be measurable when ro-
tation increases,

– dominated by rotation (e.g., no Balmer line
...).
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Under these conditions, the FT of the line
profile can be analyzed to derive the zero loci.

Contamination by the intrinsic profile:
Even if the lines are chosen carefully, the ob-
served profile encompasses larger wavelength
range with increasing v sin i, and blends af-
fect the observed profile. This contamination
can add zeros to the FT and give spurious re-
sults in v sin i determination. Such effects are
illustrated by Mora et al. (2001) who compare
the FT of observed profiles with corresponding
synthetic zero-rotation FT profiles.

Contamination by the instrumental profile:
The instrumental resolution also affects the
observed profile. It does not add zeros to the
Fourier profile but lowers the amplitude of
the sidelobes with increasing ν, and imposes,
together with the noise level, an upper-limit to
the frequencies where v sin i can be derived.

Royer et al. (2002a,b) use this method on
different data samples of A-type stars. They de-
rive v sin i values for candidate spectral lines in
the range 4200–4600 Å, and use a priori (based
on the spectral type) and a posteriori (based
on the FT shape) selections to reject unreliable
lines. The mean v sin i value is kept as the stel-
lar projected rotational velocity and the associ-
ated standard deviation is used to estimate the
error. This precision is found to be ∼ 5 % of the
v sin i value.

5.2. Broadening function

The aim of choosing single lines for deriving
v sin i is to avoid contamination by the intrin-
sic profile. Another method is to get rid of
the intrinsic profile, and study directly B(ν).
Reiners & Schmitt (2003) use a “Physical
Least Squares Deconvolution” to extract an
overall broadening profile using a large wave-
length range. Starting from a δ-template, they
adjust the equivalent width of each line and fi-
nally deconvolve the overall broadening profile
b(λ). Then, the analysis of the broadening pro-
file is done in the Fourier space, on B(ν).

This technique allows the investigation of
higher Fourier frequencies by both increasing
the signal-to-noise in the Fourier domain, and
removing possible zeros from the intrinsic pro-
file. The obtained accuracy allows the detec-
tion of signature of gravity darkening or dif-
ferential rotation (Reiners 2003). Reiners &
Royer (2004b) apply this method to sample of
74 A-type stars, and detect four possible differ-
ential rotators among the studied stars. Reiners
& Royer (2004a) apply this method to a high
signal-to-noise ratio spectrum of Altair, and the
effect of gravity darkening allows them to es-
timate the inclination angle i of the rotational
axis using spectroscopic analysis.

6. Conclusions

To summarize, the main advantages of the
Fourier analysis for v sin i determination are:

– it is calibration independent, contrary to the
use of the FWHM; the theoretical first (and
second) zero locus for the given ε is the
only needed input,

– it allows an easy diagnostic of the rota-
tional origin of broadening, by comparing
to a theoretical profile,and therefore one
can safely remove non reliable lines. It also
allows the identification of differences to
spherical rigid body rotation, such as differ-
ential rotation or gravity darkening whose
signatures can be detected on the rotational
profile in Fourier space.

Table 1. Examples of spectral lines used to de-
rive the v sin i with Fourier transform analysis
in the literature, for different ranges of spectral
types.

Spectral types Lines used for
v sin i determination

early-mid B He  4388 Å, He  4471 Å,
Si  4568 Å, ...

late B, A Fe  4405 Å, Mg  4481 Å,
Ti  4501 Å, ...

F, G type Fe  4989 Å, Fe  6265 Å,
Ca  6439 Å, ...

K type Fe  lines ∼ 6250 Å, ...
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In the literature, the Fourier method is ap-
plied to many spectral types. Some examples
of spectral lines used to derive v sin i with
Fourier method are given in Table 1. When sin-
gle line profiles are used, this method can be
applied also to binary objects showing com-
posite spectra, provided that the component
lines are not blended. Using a global broad-
ening function provides very accurate results
even for fast rotators whose spectra are heavily
blended.
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A. E., & Zorec, J. 2002b, A&A, 393, 897,
(Paper II)

Shajn, G. & Struve, O. 1929, MNRAS, 89, 222
Slettebak, A. 1985, in IAU Symp. 111:

Calibration of Fundamental Stellar
Quantities, 163

Slettebak, A., Collins, I. G. W., Boyce, P. B.,
White, N. M., & Parkinson, T. D. 1975,
ApJS, 29, 137

Smith, M. A. & Gray, D. F. 1976, PASP, 88,
809

van Belle, G. T., Ciardi, D. R., Thompson,
R. R., Akeson, R. L., & Lada, E. A. 2001,
ApJ, 559, 1155


